
Final Report for ”Miracle-Gro: Parallelizable

Implementation of Random Forests in OpenMP”

Meher Mankikar (mmankika) and Deep Patel (dmpatel)

May 2023

1 URL

Miracle-Gro Project Page
Raw URL: https://dinodeep.github.io/15418-Project-Miracle-Gro/
Miracle-Gro Source Code
Source Code Raw URL: https://github.com/dinodeep/Miracle-Gro-Source

2 Summary

We implemented a version of the Random Forest Machine Learning Model that
is implemented in Python’s sklearn’s library in C++ and parallelized it’s train-
ing using the 8-core GHC machines. We parallelized the sequential algorithm
using OpenMP’s task construct to create parallel work both across decision trees
in the forest as well as within a given decision tree.

3 Background

The machine learning application that we have parallelized is the Random Forest
machine learning algorithm. This algorithm is an ensemble-based supervised al-
gorithm that trains multiple independent decision tree models on bootstrapped
subsets of the original training dataset. The algorithm is trained on a dataset
that includes dataset entries that have features as well as a label, hence super-
vised learning. The goal is to be able to accurately predict the label for a new
data point.

This random forest classifier is effectively a list of independent binary trees
that have data and decisions stored in their child nodes. The random forest
data structure primarily consists of two main functions in its API which are
described below

• fit(data, labels) → None;
data is a N × M matrix where there are N samples in the dataset and
there are M features per sample. Furthermore, labels are N × 1 matrix

1

https://dinodeep.github.io/15418-Project-Miracle-Gro/
https://dinodeep.github.io/15418-Project-Miracle-Gro/
https://github.com/dinodeep/Miracle-Gro-Source
https://github.com/dinodeep/Miracle-Gro-Source


which is simply the label for each sample. This function modifies the data
structure to allocate decision trees and train them by finding nodes of best
split. Some of the computationally expensive portions of this function are
finding the best split to split a non-leaf node at which requires iterat-
ing throughout the dataset multiple times for multiple different potential
splits. Furthermore, there are opportunities for parallelism which will be
described below.

• predict(data) → predictions;
data is an N ×M matrix which we are trying to perform prediction with
using a trained random forest classifier. The output predictions are an
N×1 matrix containing the output predictions per sample. The expensive
portions of predictions require iterating through the tree and finding which
leaves in the tree the samples map to which is not as parallelizable because
each move left or right in the tree on the path to a node is dependent on
the prior decision along the path.

For demonstration, we ran our random forest algorithm on Firat Univer-
sity’s Internet Firewall Dataset which contains 11 different features and 65532
samples, each classifying to one of 4 classes. The features and classes are listed
below.

• Features: source port, destination port, NAT source port, NAT destina-
tion port, action, bytes, bytes sent, bytes received, packets, elapsed time
(sec), pkts sent, pkts received

• Classes: allow, take action on, drop, or reset-both

We’ve limited the dataset size from 65532 to 1024 samples in order to main-
tain reasonable training times using the current implementation of our algo-
rithm. This would allow us to experiment with new parallelization methods as
well in a more efficient manner.

During prediction, the predicted samples are passed through each of the
trees and their results are combined to get an expected output for the given
input. The high-level algorithm for generating the random forest classifier can
be found below.

Furthermore, we have allowed for additional hyperparameters in training on
randomized tree algorithm by allowing the depth of the tree to be greater than
1 which allows us to explore more areas to parallelize throughout the algorithm.

2

https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data
https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data


Figure 1: Random Forest Algorithm (Source: University of Wisconsin-Madison)

Algorithm 1 Find best split at node in a decision tree

1: bestFeature = None
2: bestGini = 1
3: for feature X in features do
4: gini = calculate gini impurity(node)
5: if gini < bestGini then
6: bestGini = gini
7: feature = X
8: end if
9: end for

There are a number of avenues of improvement that can exploit the poten-
tial for parallelism in this code. For example, each tree in the random forest
(individual decision tree) can be generated in parallel. Furthermore, within
each tree, the various branches of the decision tree can be generated in parallel
as well because they are independent regions of code. Additionally, when we
are calculating the best split for a given node, that requires iterating over all
possible features in our data and considering some set of splits for that feature.
Then, we compute the gini-impurity score over all possible splits. Thus, to find
the best split, calculating the gini-impurity score for all possible splits is inde-
pendent of each other. As a result, the algorithm for training the random forest
model has model parallelism that can be exploited to a high degree. When pro-
viding a prediction, the result is dependent on the predictions from each of the
individual decision trees and therefore there are dependencies in the predict

3

https://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/ensembles/RandomForests.pdf


part of the algorithm. One important aspect to note is that this algorithm is
recursive due to the recursive training algorithm of decision trees.

With respect to the various traits of synchronization and communication,
the primary dependencies in the training algorithm consist of computing the
best split before determining the data that is to be sent to the nodes that are
deeper in the tree. However, as mentioned before, due to the independent pos-
sible splits and the independent leaf nodes, we can perform the calculation of
these objects in parallel. Due to the recursive and conditional nature of training
the decision trees, there is little data-parallelism, and instead, model-parallelism
is more prevalent to this algorithm. As a result, this algorithm is not necessarily
amenable to SIMD execution, and furthermore, there is not as much locality in
this algorithm. However, the focus on using shared-memory parallelism allows
to us ensure that communication is not as expensive as other parallelism meth-
ods such as SIMD and message passing parallelism.

4 Approach

4.1 Languages and Technologies Used

This project was written completely in C++. We converted the original Python
implementation of random forest from Python into a simplified C++ version so
that we could compare a sequential version to our parallel implementation that
would be in C++. This removes variability between python and C++. In order
to exploit parallelism, we used OpenMP, and we specifically targeted the Gates
machines which have 8 cores. Additionally, to deal with using matrices and
some basic linear algebra functionalities, we utilized the Eigen C++ library for
running this algorithm.

4.2 Mapping Between Data Structures and Hardware

As described more in-depth below, we have used multiple methods for par-
allelizing the implementation of the training of the random forest algorithm.
Instead of having multiple decision trees (within a random forest) train on a
single thread, utilizing OpenMP task-based threading, we were able to move
the creation of each tree (a single task) to different threads. Thus, each tree in
a forest was mapped to a single thread on the machine.

Furthermore, we’ve represented the training of a single node within a tree
as an OpenMP task as well. Thus, we have that nodes are mapped to a single
thread that is working to complete its computation. Finally, for the finest-level
of parallelism, we are representing the computation of the gini-impurity score for
a single split as a task within OpenMP as well. Thus, the work of computing that
gini-impurity score is also mapped to a thread for work. Regardless, all pieces
of independent work are being mapped to a single thread that will complete its
execution due to the fact that we are using the OpenMP parallelism model for

4



training.

4.3 Code Profiling

Given our pre-existing knowledge about the random forest algorithm, we had
some idea of what areas of the sequential code had the most opportunity for
parallelization. This included parallelizing the training of individual random
trees within a forest, as they are all significant and independent pieces of com-
putation. Furthermore, from our prior experience with Lab 3 using OpenMP
to improve the speedup for an N-body simulation, we noticed that the tree-like
structure exhibits a very similar structure to that of the quad-trees in Lab 3.
Thus, we noticed that we can parallelize the creation of the children as well.
Furthermore, we believed that there were other opportunities for parallelizing
this algorithm to make it more efficient, specifically for the computation within
a single node. In order to confirm our hypothesis as well as find other areas
for improvement that we may not have thought of, we started by profiling the
sequential implementation of the random forest algorithm.

In order to profile our code, we placed timing code around the main areas
of the implementation. We got a total time for training a single decision tree.
Within training a decision tree, in the fit function, the three main portions of
computation were determined to be the calls to find best split, split, and
the recursive calls for training the children. We placed individual timers around
these calls to gain a more granular look at which portions of the code were slow.
A sample of the outputs that were received is below.

Find Best Split takes: 0.014s

[node= <root>,L,L,L,L,L] time=0.0144

[node= <root>,L,L,L,L,L] elapsed-find-split=0.0139

[node= <root>,L,L,L,L,L] elapsed-split=0.0003

[node= <root>,L,L,L,L] time=0.0287

[node= <root>,L,L,L,L] elapsed-find-split=0.0139

[node= <root>,L,L,L,L] elapsed-split=0.0004

[node= <root>,L,L,L] time=0.0434

[node= <root>,L,L,L] elapsed-find-split=0.0142

[node= <root>,L,L,L] elapsed-split=0.0004

[node= <root>,L,L] time=0.0580

[node= <root>,L,L] elapsed-find-split=0.0142

[node= <root>,L,L] elapsed-split=0.0003

[node= <root>,L] time=0.0754

[node= <root>,L] elapsed-find-split=0.0169

[node= <root>,L] elapsed-split=0.0004

[node= <root>] time=0.1068

[node= <root>] elapsed-find-split=0.0303

[node= <root>] elapsed-split=0.0007

Done Training Tree: 19

5



Full Parallel Training Time: 2.084s

As we can see here, for each individual non-leaf node, the time to find the
best split is several times larger than the time to split all the data at that node.
On average, we found that actually splitting the data was not significant in
training time in comparison to the rest of the code. We found that on average
25% of computation was spent finding the best split, while the remaining time
was mostly spent on training the children nodes, which will be computed in
parallel as described below. However, we discovered a new portion of code to
parallelize which was focusing additional parallelism on the find split logic
rather than the splitting logic of the code.

4.4 Parallelizing the Sequential Implementation and Iter-
ations of Optimization

Given these takeaways from profiling the sequential implementation, we worked
towards parallelizing on three levels separately and then combining them: forest
level, tree level, node level. Forest-level parallelism will refer to parallelizing the
training of independent decision trees in the forest in parallel. Tree-level paral-
lelism will refer to parallelizing over the creation of the left and right branch of
a single decision tree in parallel. Node-level parallelism will refer to the paral-
lelizing computation such as finding the best feature to split on at a single node.

The first was training each of the decision trees in parallel rather than in
sequence, forest-level parallelism. By the nature of the random forest algorithm,
each of the decision trees in the forest is independent and the trees together are
used to increase the accuracy of prediction. Because the training of each tree
does not depend on the training of any other tree, each decision tree can be
trained in parallel. We used OpenMP to achieve this optimization. We started
with the most basic implementation of placing #pragma omp parallel for be-
fore the for loop that loops over the number of trees that are being created. We
then experimented with different task schedules as well as different numbers of
threads, timing each configuration to see which provided the best results. The
results of these experiments will be shown later in the results section. We also
implemented this parallelism using tasks rather than parallel for and com-
pared these results in the later section as well.

The next method of parallelization was parallelizing the training within a
given decision tree, tree-level parallelism. When training a single non-leaf node
in a decision tree, when training its left and right children nodes, we can notice
that they are independent pieces of computation. As a result, we can perform
the training for the left child node and the right child node in parallel. In order
to do this, we attempted to use scheduling such as #pragma omp parallel for

as well as task-based parallelism and compared the results of these along with
the forest-based parallelism.

6



The final method of parallelization was node-level parallelism. One impor-
tant note was that this algorithm was originally implemented by performing a
minimum reduction over the gini-impurity scores over all possible splits. We re-
alized that finding the best split is a computation that implicitly has a lot of po-
tential for parallel computation. In order to exploit this parallelism, we changed
the way that we implemented finding the best split (changed find best split

to find best split parallel dim slightly from the sequential implementation.
In the sequential implementation, we first looped over all the possible splitting
indices, calculated all possible splits, then for each split, we found the one that
minimized the gini-impurity index. To parallelize this, we calculated the poten-
tial splits for that index. We then looped over all these splits, estimated the
gini score for each of those splits, and updated reduction variables to keep track
of the best split.

Instead of this, we reconfigured the code to be for loops. We first find the
best splitting value for each feature that we can split on in parallel. We then
reduce over all these possible split indices/values to get a global best decision
for that node. We keep track of a vector called best splits. Each index in
best splits, holds the best splitting value if you split on that split index. In
order to calculate these values, we used a nested for loop. The outer loop goes
over all the possible split indices. We then calculate all the possible splits and
loop over those to find the local best splitting value for the current feature. We
then store this in best splits. Outside this nested loop, we again loop to find
the global best splitting index and value over all the possible features and this
is returned.

Overall, this process required several iterations to develop and improve.
Within each method of parallelism, we experimented with parallel for and
task-based parallelism. We also looked at different scheduling methods for
forest-level parallelism. We then experimented with many different ways of
combining these levels of parallelism: just forest, forest and tree level paral-
lelism, or forest+tree+node level parallelism (with parallel for and task-based).
The results of all of these experiments are discussed in more detail in the results
section. However, in the end, we used a task-based implementation of all of the
methods of parallelism. Combining all of them resulted in the largest speedup
which will be described below.

5 Results

In the sections below, we will discuss the setup and results of each of the experi-
ments that we conducted. All experiments were conducted on the GHC clusters
which had 8-core machines.

7



5.1 Experiment 1: OMP Schedules and their Impact on
Training Time

The first set of experiments focused on looking at parallelization at the forest
level. This means that we were parallelizing over the creation of independent
decision trees in the forest. The setup for this experiment was training 10
decision trees with a maximum depth of 5. The first method of parallelization
that we looked at was using #pragma omp parallel for. In this experiment,
we compared total training time in seconds for the sequential implementation
against several different scheduling strategies. Each configuration was run 5
times and the average training times are shown below.

Figure 2: Average Training Time for Different OMP Task Schedules

We can see from this graph that there was a significant decrease in total
training time when we parallelized over the trees with a simple #pragma omp

parallel for. As we have discussed before, this is because the individual de-
cision trees in a random forest are completely independent and therefore easily
parallelizable during training. The different schedules did provide some more
speedup with the guided schedule producing the best results, with an aver-
age of 0.403 seconds over the 5 trials. In general, we may see that the static
schedule did slightly worse than the dynamic and guided schedules because the
computational complexity of training each decision tree may be highly variable
depending on the splits that are chosen. As a result, having a static assignment
of threads to work may not be the most optimal way to assign work to the
threads. With the dynamic schedule, threads will be assigned to the next tree
that is ready to be trained which allows for more flexibility despite the larger

8



cost for scheduling work. The guided schedule, which is somewhat similar to
the dynamic schedule except that the size of the chunk is proportional to the
number of unassigned iterations and therefore as computation continues, the
size of the chunk will decrease. This scheduling type works best when iterations
are poorly balanced with respect to the amount of computational cost because
the larger chunks reduce overhead of scheduling at the start and the smaller
chunks fill the schedule towards the end of the computation and improve load
balancing. Therefore in random forest, where iterations are quite variable, this
scheduling method would be expected to perform slightly better, as we saw in
this experiment.

5.2 Experiment 2: Impact of Number of Splits per Fea-
ture on Training Time

In the following few experiments, we looked at the impact of the constant
NUM SPLITS PER FEATURE on other values. The experimental setup was the
same: 10 decision trees with a max depth of 5. This experiment was run given
the results from the previous. Therefore, we are currently implementing forest-
level parallelism for all trial runs using a guided schedule. In this experiment,
we looked at the impact of the number of splits per feature on the accuracy and
average training time of the random forest algorithm. The results are in the
two plots below.

9



Figure 3: Accuracy and Training Time vs NUM SPLITS PER FEATURE

As can be seen from the plots, the average training time significantly in-
creases as the number of splits per feature is increased. This is expected because
as we increase the number of splits that are being computed per feature, this
significantly increases the computational cost of training a single decision tree
as we have to consider may more splits. However, we notice that the accuracy
of the model does not significantly increase as we consider many more splits.
This means that these large numbers of splits are not learning much more infor-
mation about the dataset and therefore may not be needed. As a result, we can
pick the smallest number of splits that gives us an accuracy that is acceptable.
We see that from 3 splits to 10 splits, the accuracy only increases from 0.803
to 0.805. However, the average training time increases from 0.142 seconds to
0.49 seconds. Therefore, we determined that this small increase in accuracy is
not worth nearly 3.5 times the training time and therefore we chose 3 to be the
optimal number of splits per feature that maximizes accuracy while keeping a
reasonable training time.

Thus, in the context of actually performing machine learning, if we are at-

10



tempting to find a model that is both accurate and efficient, we would primarily
target a model that is described above, one that is efficient by changing the
amount of available parallelism and that maintains a strong performance.

5.3 Experiment 3: Number of Threads and the Impact on
Training Time

Again for this experiment we are training a random forest of 10 trees, each with
maximum depth 5. Our goal is to determine how the performance of training
the model changes as we are increasing the number of threads on the Gates
machines using forest-level parallelism. The results are shown below.

Figure 4: Average Training Time vs Number of Threads

Figure 5: Speedup vs Number of Threads

As we are increasing the number of threads, we find that the average run-time
of the model decreases in a non-linear fashion. When we analyze the speedups,

11



we find that the speedups are not exactly linear, but somewhat sub-linear, in
which we are initially getting linear improvements in speedup; however, as we
increase the number of threads from 4 to 8, we find that the speedup does not
increase as much. This is due to the increase in computation per thread because
as we increase the number of threads, there is less computation per thread while
the amount of synchronization remains the same. As a result, we get that we
have sub-linear improvements.

5.4 Experiment 4: Cache Analysis as we Increase Com-
munication

As in prior experiments, we are training a random forest with 10 trees, each
with a maximum depth of 5 nodes. However, in this experiment, we plan on
determining the efficiency of the algorithm as we increase the number of splits
(i.e. the amount of communication). The results here will imply how well the
algorithm performs as we try to scale up the accuracy of the model.

Figure 6: Cache Misses/References and Training Time vs NUM SPLITS
PER FEATURE

We find that as we are increasing the number of splits that we are considering
for training each decision tree, we can notice that increasing the number of splits
decreases the ratio of the number of cache misses over the number of cache
references. As a result, we find that if we try to create a more accurate classifier
(by increasing the number of splits), the performance of our parallel algorithm
will not decrease significantly due to a larger amount of computation. Instead,

12



we simply find that the ratio of cache misses to cache references decreases and
plateaus, which signifies that there will be beneficial performance for a model
that is trying to be more accurate, despite the increase in computation. We can
notice that doubling the number of splits leads to a less than double performance
time measured in wall-clock time which shows that speedup is not worsened.

5.5 Experiment 5: OMP Parallel For Versus OMP Tasks

In this experiment, we focused on parallelization at the forest-level and the tree-
level. We had two different ideas for parallelization at this level. We could either
use #pragma omp parallel for which spawns several threads for different it-
erations of the for loop to parallelize computation over trees in the forest and
branches in each tree. Or we could use task-based parallelism. We wanted to
figure out whether there was any difference in performance between these two
methods. For the experimental setup, we trained each of these methods for 5
trials with 20 decision trees in the forest and a maximum depth of 5. The aver-
age training time over the 5 trials is shown for the two different methods below.
For the ”parallel-for” column, both forest-level and tree-level parallelism were
implemented using #pragma omp parallel for, thread-based parallelism. For
the task-based category, iterations of the for loop over decision trees as well as
the recursive calls to train the left and right branch within a decision tree were
instead spawned as new tasks. The results of the experiment are shown below.

Figure 7: Compare Training Time of Parallel for vs Task-Based Parallelism

As we can see, the training time was much better when implemented with

13



task-based parallelism. One observation that we made was that the training time
for thread-based parallelism in this experiment was nearly the same whether we
allocated the for loop of a single tree as parallel or not. This may have been
because the outer loop over all the trees was using too many threads and so
not enough threads were available to allocate different branches of a single tree
to different threads. Therefore, this method did not see much benefit from
parallelizing at the tree-level. However, when we look at task-based parallelism,
we were able to define training a single tree as a task. We were also able to
define training the left and right branches of a single tree as subtasks. This
provided more granularity and allows threads to be assigned to smaller tasks
to ensure that both forest and tree-level parallelism could be seen at the same
time.

5.6 Experiment 6: Final Performance Speedup using Par-
alellism at Multiple Granularities

After implementing each of the individual levels of parallelism: forest-level,
tree-level, and node-level, we wanted to examine which combination of these
methods of parallelism would provide the best speedup. The obvious assumption
was that combining all three methods would result in the best training time.
The experimental setup for these trials was training 20 decision trees with a
maximum depth of 5. Each individual method of parallelism was implemented
using task-based parallelism for this experiment. For each degree of parallelism,
we ran 5 trials and the average training time is plotted in the figure below.

Figure 8: Average Training Time vs Degree of Parallelism Implemented

14



As was expected, combining all three methods of parallelism resulted in the
best performance. We saw a 21.42× speedup from from 2.0942 seconds for the
original sequential implementation to 0.0978 seconds for the fully parallelized
implementation using an 8-core machine. A more specific breakdown of the
speedup can be found below.

• Best Single-Threaded Sequential Implementation: speedup is 1.0 ×

• Forest Parallelism: speedup is 5.84×

• Forest and Tree Parallelism: speedup is 6.56×

• Forest, Tree, and Node Parallelism: speedup is 21.42×

5.7 Examining Problem Size

With our final parallel implementation, we then wanted to look at the difference
in speedup that we were able to achieve based on the size of the problem. In
this case the size of the task is proportional to the number of decision trees in
the random forest. For the final experiment, we trained the original sequential
implementation from the proposal as well as our final parallel implementation
with several different forest sizes to determine whether the speedup would be
different for different problem sizes. The result of these tests are shown below.

Figure 9: Seqential and Parallel Training Time for Different Problem Instances

15



Figure 10: Speedup vs Problem Instance Size

As we can see, as the number of trees in the forest doubled, the sequential
training time nearly exactly doubled as well. This is because we are doing
nearly double the work if we have to train two times as many trees in sequence.
However, the parallel training time increased by less (between 1.75 and 1.9) each
time the number of trees were doubled. As a result, we see that the speedup
increases as the number of trees increases up until about 16-32 trees, and then
the speedup levels off. This may be because as the number of trees in the forest
increases past 64, all of the threads on the machine are occupied to near their
maximum capacity where the thread are reaching their maximum utilization for
this algorithm. So as we double the work further, we see that it takes nearly
twice as much time for the parallel implementation between 64 and 128 trees.

5.8 What limited speedup?

As we can see in Experiments 3 and Experiments 6, we see that we are getting
sub-optimal speedup when we are increasing the number of threads and our
speedup is limited by the size of the problem, which can be expected. If we
have a very small number of trees, we can notice that the speedup is not linear
due to the fact that the speedup is less than the number of threads which we
have which is 8. Thus, we can see that experiment 3 tells us that our algo-
rithm is limited in speedup due to communication. Because we are increasing
the number of threads and decreasing computation per thread, we find that the
amount of synchronization is staying the same, which is some portion of depen-
dencies in our code. Thus, we have an irreducible time that must occur due to

16



synchronization, leading to sub-linear speedup. Furthermore, we have that our
speedup is limited when we have few trees, and as a result, that explains that
with some fixed amount of resources, we are prevented from reaching full par-
allelism if our problem set size is too small. As a result, our speedup is overall
limited by the synchronization and the overall problem set size.

5.9 Deeper analysis: profiling of code

After performing some additional profiling of our code, when training a random
forest with 10 trees and a maximum depth of 5, we get that the total time
to execute it in parallel is approximately 0.0516 seconds. Of this time, 100%
of the time is spent training trees. Because we have required synchronization
and dependencies, the portion of the code that we can analyze in discrete steps
is the fitting of a single node in the tree and its children. Of the time spent
fitting the root node, we find that because we have parallelized the algorithm
for finding the optimal split but we didn’t parallelize the actual splitting, we
find that when training a node, approximately 40% of training a node is spent
finding the optimal split while 60% of the time is spent actually splitting the
data. Because we haven’t explored performing parallelization to split the data,
this is another area that can be explored to improve the performance of training
the random forest model.

5.10 Analyze choice of machine

We believe that our choice of machine (shared-memory model machine) is sound
because it allows us to perform parallel algorithms that are recursive very easily.
Furthermore, because these algorithms are conditional (we are splitting the data
based on the node that it belongs to), we find that using a SIMD architecture
such as a GPU would not be beneficial for the case of this algorithm as we
would have a lot of divergent execution. However, that does not influence the
shared-memory models, making performance for it very strong in comparison
to other models.

6 References

1. Reference Python Code Converted to C++: Scikit-Learn Random Forest
Algorithm

2. Dataset: Firat University’s Internet Firewall Dataset

3. Reference Image for Random Forest Algorithm: University of Wisconsin-
Madison

7 List of Work Done by Each Student

Meher: 50%, Deep 50%

17

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data
https://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/ensembles/RandomForests.pdf
https://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/ensembles/RandomForests.pdf


• Meher: For final project: worked on parallelization methods (forest-level,
tree-level, node-level), performed experiments and gathered data, did anal-
ysis and looked at results of experiments, worked on report and put to-
gether final deliverables, created results to go on poster

• Deep: For final project: worked on parallelization methods (forest-level,
tree-level, node-level), worked on analysis and looked at results of experi-
ments, worked on report, created some diagrams for the poster

18


	URL
	Summary
	Background
	Approach
	Languages and Technologies Used
	Mapping Between Data Structures and Hardware
	Code Profiling
	Parallelizing the Sequential Implementation and Iterations of Optimization

	Results
	Experiment 1: OMP Schedules and their Impact on Training Time
	Experiment 2: Impact of Number of Splits per Feature on Training Time
	Experiment 3: Number of Threads and the Impact on Training Time
	Experiment 4: Cache Analysis as we Increase Communication
	Experiment 5: OMP Parallel For Versus OMP Tasks
	Experiment 6: Final Performance Speedup using Paralellism at Multiple Granularities
	Examining Problem Size
	What limited speedup?
	Deeper analysis: profiling of code
	Analyze choice of machine

	References
	List of Work Done by Each Student

